3D ÇÁ¸°Æà ±â¹ýÀ» ÅëÇÑ Àü¸³»ù¾Ï ȯÀÚÀÇ ³»ºÎÀå±â ÆÒÅÒ Á¦ÀÛ ¹× »ýü³»¼±·®ÃøÁ¤(In-vivo dosimetry)¿¡ ´ëÇÑ °íÂû
A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient

´ëÇѹæ»ç¼±Ä¡·áÇÐȸÁö 2015³â 27±Ç 1È£ p.53 ~ p.60

¼­Á¤³²(Suh Jeong-Nam) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
³ªÁ¾¾ï(Na Jong-Eok) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
¹è¼±¸í(Bae Sun-Myeong) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
Á¤µ¿¹Î(Jung Dong-Min) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
À±ÀÎÇÏ(Yoon In-Ha) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
¹èÀç¹ü(Bae Jae-Beom) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
°ûÁ¤¿ø(Kwak Jung-Won) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú
¹é±Ý¹®(Back Geum-Mun) - ¼­¿ï¾Æ»êº´¿ø ¹æ»ç¼±Á¾¾çÇаú

Abstract

¸ñ Àû : º» ¿¬±¸´Â 3D ÇÁ¸°Å͸¦ ÀÌ¿ëÇÏ¿© Àü¸³»ùºÎÀ§ ÆÒÅÒÀ» Á¦ÀÛÇÏ°í »ýü³»¼±·®ÃøÁ¤(In-vivo dosimetry)À» ÅëÇØ ±× À¯¿ë¼ºÀ» Æò°¡ÇÏ°íÀÚ ÇÑ´Ù.

´ë»ó ¹× ¹æ¹ý : Àü¸³»ù¾Ï ȯÀÚÀÇ 3Â÷¿ø Ä¡·áüÀûÀ» ¹ÙÅÁÀ¸·Î 3D ÇÁ¸°ÅÍ(3D EDISON+, Lokit, KOREA)¸¦ ÀÌ¿ëÇÏ¿© Àü¸³»ù°ú Á÷ÀåÀÇ Ã¼ÀûÀ» µ¿ÀÏÇÏ°Ô ¸ð»çÇÑ ÆÒÅÒÀ» Á¦ÀÛÇÏ°í, ÄÄÇ»ÅÍ´ÜÃþÃÔ¿µ(Lightspeed CT, GE, USA)À» ÅëÇØ ÆÒÅÒ¿µ»óÀ» ȹµæÇÏ¿´´Ù. Àü¸³»ù¾Ï ȯÀÚÀÇ Ã¼Àû°ú ÆÒÅÒÀÇ Ã¼ÀûÀ» ºñ±³ ÇÑ ÈÄ, Àü»êÈ­Ä¡·á°èȹ½Ã½ºÅÛ(Eclipse version 10.0, Varian, USA)À» ÀÌ¿ëÇÏ¿© Ä¡·á°èȹÀ» ¼³°èÇÏ¿´´Ù. ÆÒÅÒ ³» ÃøÁ¤ÁöÁ¡ÀÎ ¹æ±¤(Bladder), Àü¸³»ù(Prostate), Á÷Àå À§º®(Rectal anterior wall), Á÷Àå ¾Æ·¡º®(Rectal posterior wall)ÀÇ ÀÓÀÇÀÇ ÁöÁ¡¿¡ ¸ð½ºÆê°ËÃâ±â(Metal OXIDE Silicon Field Effect Transistor, MOSFET)¸¦ À§Ä¡½ÃÄÑ ¼±·® ÃøÁ¤°ª°ú Ä¡·á°èȹÀ» ºñ±³ºÐ¼® ÇÏ¿´´Ù.

°á °ú : Àü¸³»ù°ú Á÷Àådz¼±ÀÇ È¯ÀÚüÀûÀº °¢°¢ 30.61 cc, 52.19 cc ÀÌ°í, ÆÒÅÒüÀûÀº 31.12 cc, 53.52 cc·Î °¢ üÀûÀÇ Â÷ÀÌ´Â 3% ¹Ì¸¸À¸·Î È®ÀεǾú´Ù. ¸ð½ºÆê°ËÃâ±âÀÇ Á¤¹Ðµµ´Â 3%À̳»·Î ÃøÁ¤µÇ¾ú°í ¼±·®ÀÇ º¯È­¿¡ µû¶ó »ó°ü°è¼ö R2 = 0.99 ~ 1.00 ÀÇ ¼±Çü¼ºÀ» º¸¿´´Ù. ³× °÷ÀÇ ÃøÁ¤ ÁöÁ¡À» Ä¡·á°èȹµÈ ¼±·®°ú ºñ±³ÇÑ °á°ú ¹æ±¤ 1.4%, Àü¸³»ù 2.6%, Á÷Àå À§º® 3.7%, Á÷Àå ¾Æ·¡º® 1.5%·Î ³ªÅ¸³µ°í ¸ð½ºÆê°ËÃâ±âÀÇ Á¤¹Ðµµ¸¦ °í·ÁÇÑ ¼±·®ÃøÁ¤ÀÇ Á¤È®¼ºÀº 5% À̳»·Î Æò°¡µÇ¾ú´Ù.

°á ·Ð : º» ½ÇÇèÀ» ÅëÇØ 3D ÇÁ¸°Å͸¦ ÀÌ¿ëÇÏ¿© Á¦ÀÛÇÑ Àü¸³»ù ºÎÀ§ ÆÒÅÒÀº üÀûÀÇ Â÷ÀÌ 3% ¹Ì¸¸À¸·Î, ÀÎü¸¦ ¸ð»çÇϴµ¥ È¿°úÀûÀ¸·Î »ç¿ëµÉ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù. Á¦ÀÛµÈ ÆÒÅÒÀ» ÀÌ¿ëÇÑ »ýü³»¼±·®ÃøÁ¤Àº ¸ð½ºÆê°ËÃâ±âÀÇ Á¤¹Ðµµ¸¦ °í·ÁÇÏ´õ¶óµµ ¹æ±¤, Àü¸³»ù, Á÷Àå À§º®, Á÷Àå ¾Æ·¡º®ÀÇ ¸ðµç ÃøÁ¤Á¡¿¡¼­ 5% À̳»ÀÇ Á¤È®µµ·Î ¼öÇà ÇÒ ¼ö ÀÖ¾ú´Ù. µû¶ó¼­ 3D ÇÁ¸°Æ®¸¦ ÀÌ¿ëÇØ Á¦ÀÛµÈ Àü¸³»ù ºÎÀ§ ÆÒÅÒÀº »ýü¼±·®ÃøÁ¤À» Çϴµ¥ ÀÖ¾î ¸Å¿ì À¯¿ëÇÏ¿´À¸¸ç ÇâÈÄ È¯ÀÚ¿¡°Ô Á÷Á¢ Àû¿ëÇϱ⠾î·Á¿î ºÎÀ§¸¦ ÆÒÅÒÀ¸·Î ´ëü Á¦ÀÛÇÏ¿© »ýü³»¼±·®ÃøÁ¤ÀÌ °¡´ÉÇÒ °ÍÀ¸·Î »ç·áµÈ´Ù.
Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient.

Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value.

Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET.

Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

Å°¿öµå

3D ÇÁ¸°ÅÍ, Àü¸³»ù, ÆÒÅÒ, »ýü³»¼±·®ÃøÁ¤
3D printer, Prostate, Phantom, In-vivo dosmetry
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
º» ¿¬±¸¸¦ ÅëÇÏ¿© 3D ÇÁ¸°Å͸¦ ÀÌ¿ëÇÏ¿© Á¦ÀÛÇÑ Àü¸³»ù ºÎÀ§ ÆÒÅÒÀº üÀûÀÇ Â÷ÀÌ 3% ¹Ì¸¸À¸·Î, ÀÎü¸¦ ¸ð»çÇϴµ¥ È¿°úÀûÀ¸·Î »ç¿ëµÉ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´À½À» º¸°íÇÏ¿´´Ù.
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
DOI
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå