Diffusion Tensor Tractography Analysis of the Corpus Callosum Fibers in Amyotrophic Lateral Sclerosis

Journal of Clinical Neurology 2014³â 10±Ç 3È£ p.249 ~ p.256

±èÁöÀº(Kim Jee-Eun) - Seoul Medical Center Department of Neurology
(Oh Jungsu S) - University of Ulsan College of Medicine Asan Medical Center Department of Nuclear Medicine
¼ºÁ¤ÁØ(Sung Jung-Joon) - Seoul National University Hospital Department of Neurology
À̱¤¿ì(Lee Kwang-Woo) - Seoul National University Hospital Department of Neurology
¼ÛÀÎÂù(Song In-Chan) - Seoul National University Hospital Department of Radiology
È«À±È£(Hong Yoon-Ho) - Seoul National University College of Medicine Boramae Medical Center Department of Neurology

Abstract

Background and Purpose: Involvement of the corpus callosum (CC) is reported to be a consistent feature of amyotrophic lateral sclerosis (ALS). We examined the CC pathology using diffusion tensor tractography analysis to identify precisely which fiber bundles are involved in ALS.

Methods: Diffusion tensor imaging was performed in 14 sporadic ALS patients and 16 age-matched healthy controls. Whole brain tractography was performed using the multiple-region of interest (ROI) approach, and CC fiber bundles were extracted in two ways based on functional and structural relevance: (i) cortical ROI selection based on Brodmann areas (BAs), and (ii) the sulcal-gyral pattern of cortical gray matter using FreeSurfer software, respectively.

Results: The mean fractional anisotropy (FA) values of the CC fibers interconnecting the primary motor (BA4), supplementary motor (BA6), and dorsolateral prefrontal cortex (BA9/46) were significantly lower in ALS patients than in controls, whereas those of the primary sensory cortex (BA1, BA2, BA3), Broca¡¯s area (BA44/45), and the orbitofrontal cortex (BA11/47) did not differ significantly between the two groups. The FreeSurfer ROI approach revealed a very similar pattern of abnormalities. In addition, a significant correlation was found between the mean FA value of the CC fibers interconnecting the primary motor area and disease severity, as assessed using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale, and the clinical extent of upper motor neuron signs.

Conclusions: Our findings suggest that there is some degree of selectivity or a gradient in the CC pathology in ALS. The CC fibers interconnecting the primary motor and dorsolateral prefrontal cortices may be preferentially involved in ALS.

Ű¿öµå

amyotrophic lateral sclerosis, motor neuron disease, corpus callosum, diffusion tensor imaging, tractography, cortical parcellation
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø 
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Ű¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆÇ³âµµ(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
DOI
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå