ÁÖÁ¦º°°Ë»ö
(current)
Å°¿öµå°Ë»ö
(±¸)µ¥ÀÌÅÍ°Ë»ö
¾÷µ¥ÀÌÆ®Á¤º¸
°ü·Ã»çÀÌÆ®
°ËÁø À¯¹æ ÃÊÀ½ÆÄÀÇ À§¾ç¼º º´º¯ Àú°¨À» À§ÇÑ Àΰø Áö´É ÄÄÇ»ÅÍ º¸Á¶Áø´Ü (S-Detect) Àû¿ëÀÇ ¸ðµ¨ ±¸ÃàÀ» À§ÇÑ ´Ù±â°ü ¿¬±¸
Multicenter study for modeling artificial intelligence based computer-aided diagnosis (S-detect) in application of screening ultrasound detected lesion to reduce false positive biopsy
´ëÇÑÀ¯¹æ°ËÁøÀÇÇÐȸÁö
2021³â 18±Ç 1È£ p.53 ~ p.65
ÀåÁ¤¹Î
(Chang Jung-Min) - ¼¿ï´ëÇб³º´¿ø ¿µ»óÀÇÇаú
Abstract
Å°¿öµå
KMID :
1114620210180010053
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
The proposed model showed good performance for differentiating screening US-detected breast masses, thus demonstrating a potential to reduce unnecessary biopsies.
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
DOI
KCDÄÚµå
ICD 03
°Ç°º¸ÇèÄÚµå