Next Generation DNA Sequencing and Its Application in Clinical Medicine

´ëÇÑÁÖ»êÀÇÇÐȸÀâÁö 2014³â 25±Ç 3È£ p.133 ~ p.139

Á¶¼¼Áø(Cho Se-Chin) - University of Kansas School of Medicine
(Emeritus) - University of Kansas School of Medicine

Abstract

Watson and Crick published a paper on the double helical structure of DNA in Nature in April 25, 1953. The human genome is contained in the 23 pairs of chromosomes and in the mitochondrial DNA of each cell. The Human Genome Project was launched in 1990 under the direction of Watson and concluded in 2003, on the 50th anniversary of Watson and Crick paper. Over 6 billion of nucleotides of genetic codes are in single cells. There are 23,000 protein coding genes and the remainder are non-coding DNA, regulatory DNA. Since the completion of Human Genome Project, these huge genomic information has been translated into clinically usable medical information. With the advent of massively parallel DNA sequencing, known as next generation DNA sequencing, the cost and turn-around time were significantly reduced so that the era of Whole Genome Sequencing entered into hospitals and medical clinics. On June 16, 2014 American Society of Human Genetics revised its mission statement as follows. ¡°Our mission is to advance human genetics in science, health and society through research, education and advocacy¡±. Finally medical genetics nestled its roots in the midst of genetics and genomics.

Ű¿öµå

New generation DNA sequencing, Whole genome/exome sequencing, Human genetic disease
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø 
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Ű¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆÇ³âµµ(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
DOI
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå