Junctional adhesion molecules mediate transendothelial migration of dendritic cell vaccine in cancer immunotherapy.

Roh, Seung-Eon; Jeong, Yideul; Kang, Myeong-Ho; Bae, Yong-Soo
Cancer letters
2018Oct ; 434 ( 10 ) :196-205.
ÀúÀÚ »ó¼¼Á¤º¸
Roh, Seung-Eon - Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
Jeong, Yideul - Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
Kang, Myeong-Ho - Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
Bae, Yong-Soo - Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea. Electronic address: ysbae04@skku.edu.
ABSTRACT
In vitro generated dendritic cells (DCs) have been studied in cancer immunotherapy for decades. However, the detailed molecular mechanism underlying transendothelial migration (TEM) of DC vaccine across the endothelial barrier to regional lymph nodes (LNs) remains largely unknown. Here, we found that junctional adhesion molecule (JAM)-Like (JAML) is involved in the TEM of mouse bone marrow-derived DCs (BMDCs). Treatment with an anti-JAML antibody or JAML knock-down significantly reduced the TEM activity of BMDCs, leading to impairment of DC-based cancer immunotherapy. We found that the interaction of JAML of BMDCs with the coxsackie and adenovirus receptor of endothelial cells plays a crucial role in the TEM of BMDCs. On the other hand, human monocyte-derived DCs (MoDCs) did not express the JAML protein but still showed normal TEM activity. We found that MoDCs express only JAM1 and that the homophilic interaction of JAM1 is essential for MoDC TEM across a HUVEC monolayer. Our findings suggest that specific JAM family members play an important role in the TEM of in vitro-generated mouse and human DCs from the inoculation site to regional LNs in DC-based cancer immunotherapy. CI - Copyright ??2018 Elsevier B.V. All rights reserved.
keyword
DC immunotherapy; Human monocyte-derived dendritic cells (MoDCs); JAM; JAML; Mouse bone marrow-derived dendritic cells (BMDCs); TEM
¸µÅ©

ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
Specific JAM family members play an important role in the TEM of in vitro-generated mouse and human DCs from the inoculation site to regional LNs in DC-based cancer immunotherapy; JAML is involved in the TEM of mouse bone marrow-derived dendritic cells (BMDC).
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
DOI
10.1016/j.canlet.2018.07.029
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå