Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence

Korean Journal of Radiology 2021³â 22±Ç 3È£ p.442 ~ p.453

¹Ú¼ºÈ£(Park Seong-Ho) - University of Ulsan College of Medicine Asan Medical Center Department of Radiology
ÃÖÀç¼ø(Choi Jae-Soon) - University of Ulsan College of Medicine Asan Medical Center Department of Biomedical Engineering
º¯Á¤½Ä(Byeon Jeong-Sik) - University of Ulsan College of Medicine Asan Medical Center Department of Gastroenterology

Abstract

Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

Å°¿öµå

Software validation, Device approval, Insurance coverage, Artificial intelligence
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø 
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
This review article examined the key principles of clinical validation, device approval, and insurance coverage of AI algorithms for medical diagnosis/prediction. When evaluating the discrimination performance of AI, the Dice similarity coefficient, sensitivity, specificity, ROC curve, and FROC curve are widely used.
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå