È¥ÇÕÄ¡¿­°ú ¿µ±¸Ä¡¿­ ȯÀÚ¸¦ ´ë»óÀ¸·Î ÇÑ À¥ ±â¹Ý ÀΰøÁö´É µÎºÎ °èÃø ºÐ¼®¿¡¼­ÀÇ ºñ±³ °ËÁõ
Comparative Validation of the Mixed and Permanent Dentition at Web-Based Artificial Intelligence Cephalometric Analysis

´ëÇѼҾÆÄ¡°úÇÐȸÁö 2022³â 49±Ç 1È£ p.85 ~ p.94

½Å¼±ÇÑ(Shin Sun-Hahn) - Ewha Womans University Mokdong Hospital Department of Pediatric Dentistry
±èµ¿Çö(Kim Dong-Hyun) - Ewha Womans University Mokdong Hospital Department of Pediatric Dentistry

Abstract

ÀÌ ÈÄÇâÀû ¿¬±¸ÀÇ ¸ñÀûÀº 7 - 15¼¼ »çÀÌÀÇ È¥ÇÕÄ¡¿­±â¿Í ¿µ±¸Ä¡¿­±âÀÇ ¼Ò¾Æ ¹× û¼Ò³â ȯÀÚ¿¡¼­ ±âÁ¸ ±³Á¤ ºÐ¼® ¹æ¹ý°ú Àΰø Áö´ÉÀ»È°¿ëÇÑ ±³Á¤ ºÐ¼® ¹æ¹ýÀ» ÀÌ¿ëÇÑ º¯¼öÀÇ Â÷À̸¦ ºñ±³ÇÏ¿© Æò°¡ÇÏ´Â °ÍÀÌ´Ù.
±³Á¤ Áø´ÜÀ» À§ÇØ Ãø¸é µÎºÎ°èÃø ¹æ»ç¼± »çÁøÀ» ÃÔ¿µÇÑ ¼Ò¾Æ ȯÀÚ 60¸í(È¥ÇÕ Ä¡¿­±â 30¸í, ¿µ±¸Ä¡¿­±â 30¸í)À» ¹«ÀÛÀ§·Î ¼±Á¤ÇÏ¿´´Ù. V-cephÀ» »ç¿ëÇÑ ±âÁ¸ ºÐ¼® ¹æ¹ý°ú WebCeph¸¦ »ç¿ëÇÑ µö ·¯´× ±â¹Ý ºÐ¼® ¹æ¹ýÀ¸·Î 1¸íÀÇ °Ë»çÀÚ°¡ 17°³ÀÇ µÎºÎ ÃøÁ¤ °èÃøÁ¡À»½Äº°ÇÏ°í, 22°³ÀÇ ÃøÁ¤ Ç׸ñÀ» Æò°¡Çß´Ù. ±âÁ¸ ºÐ¼® ¹æ¹ýÀÇ ¹Ýº¹ ÃøÁ¤À¸·Î ÀÎÇÑ ¿ÀÂ÷´Â PearsonÀÇ »ó°ü ºÐ¼®À» »ç¿ëÇÏ¿© Æò°¡ÇϾú´Ù.
È¥ÇÕÄ¡¿­±º°ú ¿µ±¸Ä¡¿­±º¿¡ ´ëÇÑ °¢°¢ µÎ ¹æ¹ýÀÇ Â÷ÀÌ´Â paired t-test¸¦ »ç¿ëÇÏ¿© Æò°¡ÇÏ¿´´Ù.
È¥ÇÕÄ¡¿­±º¿¡¼­ µÎ ºÐ¼® ¹æ¹ýÀÇ Â÷ÀÌ´Â 8°³ÀÇ °èÃøÇ׸ñ¿¡¼­ Åë°èÀûÀ¸·Î À¯ÀÇÇÏ¿´´Ù: APDI, SNA, SNB, Mandibular plane angle, LAFH (p < 0.001), Facial ratio (p = 0.001), U1 to SN (p = 0.012), and U1 to A-Pg (p = 0.021). ¿µ±¸Ä¡¿­±º¿¡¼­´Â µÎ ºÐ¼® ¹æ¹ý °£¿¡ 4 °³ÀÇ °èÃøÇ׸ñÀÌ Åë°èÀûÀ¸·Î À¯ÀÇÇÑ Â÷À̸¦ º¸¿´´Ù: ODI (p = 0.020), Wits appraisal (p = 0.025), Facial ratio (p = 0.026), and U1 to A-Pg (p = 0.001).
¸¹Àº ½Ã°£ÀÌ ¼Ò¿äµÇ´Â ±âÁ¸ÀÇ ±³Á¤ ºÐ¼® ¹æ¹ý°ú ºñ±³ÇÏ¿´À» ¶§, µö ·¯´× ±â¹Ý ±³Á¤ ºÐ¼® ½Ã½ºÅÛÀº ÃøÁ¤ÀÇ ½Å·Ú¼º°ú À¯È¿¼º Ãø¸é¿¡¼­ÀÓ»óÀûÀ¸·Î Çã¿ëµÉ ¼ö ÀÖ´Ù. ÇÏÁö¸¸ ¼Ò¾Æ ȯÀÚÀÇ ±³Á¤ ºÐ¼®À» À§ÇØ µö ·¯´× ±â¹Ý ÇÁ·Î±×·¥À» »ç¿ëÇÒ ¶§¿¡´Â ÀÌ·¯ÇÑ ÇÁ·Î±×·¥ÀÇ ÇÑ°èÁ¡À» ÀÎÁöÇÏ°í ¿Ã¹Ù¸¥ ÆÇ´ÜÀ¸·Î »ç¿ëÇÏ´Â °ÍÀÌ Áß¿äÇÏ´Ù.
This retrospective study aimed to evaluate the difference in measurement between conventional orthodontic analysis and artificial intelligence orthodontic analysis in pediatric and adolescent patients aged 7 - 15 with the mixed and permanent dentition.
A total of 60 pediatric and adolescent patients (30 mixed dentition, 30 permanent dentition) who underwent lateral cephalometric radiograph for orthodontic diagnosis were randomly selected. Seventeen cephalometric landmarks were identified, and 22 measurements were calculated by 1 examiner, using both conventional analysis method and deep learning-based analysis method. Errors due to repeated measurements were assessed by Pearson¡¯s correlation coefficient.
For the mixed dentition group and the permanent dentition group, respectively, a paired t-test was used to evaluate the difference between the 2 methods.
The difference between the 2 methods for 8 measurements were statistically significant in mixed dentition group: APDI, SNA, SNB, Mandibular plane angle, LAFH (p < 0.001), Facial ratio (p = 0.001), U1 to SN (p = 0.012), and U1 to A-Pg (p = 0.021). In the permanent dentition group, 4 measurements showed a statistically significant difference between the 2 methods: ODI (p = 0.020), Wits appraisal (p = 0.025), Facial ratio (p = 0.026), and U1 to A-Pg (p = 0.001).
Compared with the time-consuming conventional orthodontic analysis, the deep learning-based cephalometric system can be clinically acceptable in terms of reliability and validity. However, it is essential to understand the limitations of the deep learning-based programs for orthodontic analysis of pediatric and adolescent patients and use these programs with the proper assessment.

Å°¿öµå

Cephalometric radiography, Deep learning, Artificial intelligence, Orthodontic diagnosis
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
ÇмúÁøÈïÀç´Ü(KCI) 
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
When using deep learning-based programs for orthodontic analysis of pediatric and adolescent patients, it is recommended to recognize the limitations of this program and use it with the proper judgment.
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå